

Reporting and the
First Law of Holes

There’s a better way.

Easier to start with.
Easier to maintain.

Scales to petabytes.

Developers?

Non-developers?

Sebastian
von Conrad

@vonconrad

83rd largest site in the world

> $250 million of community
earnings

This happened to me.

Everywhere I’ve worked.

Day after launch.

Yesterday’s sales?

Mission:

We can solve this with our ORM!

This is the point where we realise:

(If we have one.)

Sale.where(created_at: 📅).count

Let’s automate!

Admin panel!
Dashboards!

We are masters at putting
ourselves into holes we

can’t get out of.

We don’t think about
reporting up front.

We put reports
inside our apps.

We shouldn’t.

We can’t anticipate what
questions will be asked later.

Last month’s top countries?

Mission:

Sale User

Profile

country

We can solve this with SQL!

This is the point where we realise:

SELECT p.country, count(s.id) AS num_sales
FROM sales s
INNER JOIN users u ON s.user_id = u.id
INNER JOIN user_profiles p ON p.user_id = u.id
WHERE s.created_at BETWEEN 📅 AND 📅
GROUP BY p.country;

Let’s add it to the
dashboard.

But there’s no time to
update existing reports.

The way we build
applications does not

cater to reporting.

Our 3NF database is
good for the app, but

bad for reporting.

JOIN JOIN JOIN

Sub-optimal indexing.

Expensive reporting
queries can hurt

production systems.

Replication?

Expensive.
Prone to lag.

Which categories do well
in which countries?

Mission:

Sale

Item

User

Category

Profile

country

name

SELECT p.country, c.name, count(s.id) AS num_sales
FROM sales s
INNER JOIN items i ON s.item_id = i.id
INNER JOIN categories c ON i.category_id = c.id
INNER JOIN users u ON s.user_id = u.id
INNER JOIN user_profiles p ON p.user_id = u.id
WHERE s.created_at BETWEEN 📅 AND 📅
GROUP BY p.country, c.name;

We never liked writing
SQL in the first place.

This is the point where we realise:

Right tool for the right job.

Right?

The 18-month data
warehouse project!

Introducing:

With an ETL process
that reaches into the
application database.

And we probably won’t
change the dashboards

that already work.

You have to understand
the object model in order

to understand the data.

Data warehouse developers
will need intimate knowledge

of the application.

Misunderstandings can
lead to wrong information.

Schema changes suck.

Do you CI your
reporting queries?

Fine, but do you
CI your ETL?

But we’re not done
yet, are we?

Items featured (and not)
on homepage?

Mission:

We can do this, because we
think about the future.

Right?

+ ------- + ---------------- + -------------- +
| item_id | feature_start_at | feature_end_at |
| ------- | ---------------- | -------------- |
| 34292 | 2015-02-01 | 2015-02-03 |
| 64233 | 2015-02-02 | 2015-02-03 |
| 77245 | 2015-02-05 | 2015-02-05 |
| 212 | 2015-01-23 | 2015-02-08 |
| 22196 | 2015-02-06 | 2015-02-08 |
| ... | ... | ... |
+ ------- + ---------------- + -------------- +

No, we haven’t.

+ --- + ----- + ------------ + --- + -------- +
| id | price | category_id | ... | featured |
| --- | ----- | ------------ | --- | -------- |
| 209 | 40.00 | 112 | ... | false |
| 210 | 34.00 | 2 | ... | false |
| 211 | 78.00 | 61 | ... | false |
| 212 | 53.00 | 54 | ... | true |
| 213 | 12.00 | 14 | ... | false |
| ... | ... | ... | ... | ... |
+ --- + ----- + ------------ + --- + -------- +

We don’t have
historical data.

We can’t solve this problem.

This is the point where we realise:

ORMs maintain current
state, not history.

ETL is not idempotent.

ETL needs to load
everything.

So what can we
do about it?

First Law of Holes:
if you find yourself
in one, stop digging.

- Will Rogers, 1911

So, how do we
stop digging?

This happened to me.

Last product I built.

Step 1: Need?
Step 2: ?
Step 3: ?
Step 4: ?
Step 5: ?

Not a trick question!

Different mental models.

What objects are?
What do they do?

Series of business
processes.

Events!

Signup. Sale.
Subscription.
Cancellation.
Refund. Etc.

These events are key.

Separate concerns.

Single Responsibility
Principle.

Applies to applications too.

Decouple reporting
from the application.

Step 1: Need?
Step 2: Know?
Step 3: ?
Step 4: ?
Step 5: ?

When the event happens,
what do you know about it?

Who or what is involved in
making the event happen?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Seller
Who are they?
Where are they?
When did they sign up?
Previous sales?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Seller
Who are they?
Where are they?
When did they sign up?
Previous sales?

Item
Featured on homepage?
Category?
Price?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Seller
Who are they?
Where are they?
When did they sign up?
Previous sales?

Item
Featured on homepage?
Category?
Price?

Category
Number of items?
Price range?
Facets?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Seller
Who are they?
Where are they?
When did they sign up?
Previous sales?

Transaction
Amount?
Payment
gateway?
Coupon?
Tax?

Item
Featured on homepage?
Category?
Price?

Category
Number of items?
Price range?
Facets?

Buyer
Who are they?
Where are they?
When did they sign up?
Previous purchases?

Seller
Who are they?
Where are they?
When did they sign up?
Previous sales?

Transaction
Amount?
Payment
gateway?
Coupon?
Tax?

Item
Featured on homepage?
Category?
Price?

Category
Number of items?
Price range?
Facets?

Affilitates
Were they referred?
Who is the affiliate?

Collect everything.

All attributes from domain
objects == valid strategy.

Step 1: Need?
Step 2: Know?
Step 3: Denormalise
Step 4: ?
Step 5: ?

Denormalise!

Seriously, let’s add
some redundant data.

Design data structure for
how we want it read.

1NF is better for
reporting than 3NF.

Make it immutable.

Data is never wrong.

At worst, it’s only
missing some events.

State as of event is
maintained forever.

Then, we serialise.
(I like JSON.)

job_id
job_purchased_at
service_id
service_name
service_price_in_cents
service_turnaround_in_days
service_revision_requests
service_currently_featured
service_created_at
service_approved_at
service_approved_by_id
service_approved_by_envato_id
service_approved_by_username
service_approved_by_full_name
service_approved_by_email_address
service_category_id
service_category_name
service_category_top_level_name
service_category_min_price_in_cents
service_category_max_price_in_cents
service_category_parent_id
service_category_parent_name
duration_between_approval_and_purchase_in_seconds
service_enquiry_count
service_enquiry_message_count
custom_job
buyer_login_method

buyer_id
buyer_envato_id
buyer_username
buyer_full_name
buyer_email_address
buyer_ip_address
buyer_city
buyer_country
buyer_account_created_at
provider_id
provider_envato_id
provider_username
provider_full_name
provider_email_address
provider_city
provider_country
provider_account_created_at
provider_became_provider_at
payment_uuid
payment_gateway_name
payment_gateway_reference
payment_discount_amount_in_cents
payment_charged_amount_in_cents
coupon_code
coupon_expiry
coupon_name
coupon_discount_percentage
coupon_discount_dollar_value_in_cents

Your application is not
responsible for reporting.

Application generates
data, not reports.

Step 1: Need?
Step 2: Know?
Step 3: Denormalise
Step 4: Store
Step 5: ?

Application must not be
allowed to read the data.

Write to log table.

Difficulty: Easy.

Might not work forever,
but good starting point.

Transactions as a bonus!

Write to log file
(with Splunk or Hadoop).

Difficulty: Moderate.

Send to SaaS in the cloud
(e.g. Tableau, GoodData).

Difficulty: Moderate

Data warehouse.

Difficulty: “Expert.”

 Still an ETL, but it won’t
reach deep into the database.

No need to understand
the object model.

Immutability
<insert superlatives>.

ETL process
becomes idempotent.

Don’t need to keep the
data in the database.

Example: Write to log table,
periodically archive.

Step 1: Need?
Step 2: Know?
Step 3: Denormalise
Step 4: Store
Step 5: GOTO 1

Rinse, repeat.

Keep logging events that are
important to the business.

Make report design a
first class citizen.

Build reports with tools
designed to build reports.

Reports can be built
by non-developers.

Developers become
responsible for supplying

data, not generating reports.

Ad-hoc reporting
becomes a breeze.

Example:

Export to .csv, import in Excel.

You can capture new
data for future events,

but never backfill.

(Unless your job is on the line.)

Combine event logs for
realtime data.

* Caveats:

You might still not be able to
answer all questions.

Let’s build another dashboard!
Let’s log the event!

(Event Sourcing.)

How big of a hole
are you in?

Only at the beginning?

Start with this!

Already in a hole?

How can you transition to
something better?

Start with the
biggest pain point.

Step 1: Need?
Step 2: Know?
Step 3: Denormalise
Step 4: Store
Step 5: GOTO 1

Iterate from there.

Make sure to delete
your dashboards.

Separate reporting from
your application.

Climb out of the hole.
Don’t make it deeper.

Thank you!

Follow me on Twitter:
@vonconrad

