
Refactoring Team Design
Designing teams and busting myths at REA

Topics for today

• What does a typical REA team look like?

• Refactoring mobile teams

• Models for team collaboration

• What does the data tell us about our teams?

• Tribes and squads != agile

• Teams are complex and evolu@onary

Agile squads are dead

Team design by imitation

We’ve done
away with BAs

Company A
‘‘ ’’

We don’t have
QAs any more

Company B
‘‘ ’’

We use Agile
Coaches

Company Z

‘‘ ’’
Let’s copy that

team on Level 3

Us

‘‘ ’’

We’re going
DevOps

Company C
‘‘

We’re SAFe

Anonymous
‘‘ ’’

’’

Product lifecycle
Experimenting. Sustaining. Sunsetting.

Team design by context
Key concepts to consider

Distributed teams
What is optimal for remote
teams?

Custodianship
You build it, you run it

People leadership
Developing careers

Eco-system complexity
Integration points and dependencies

Products and platforms
Different mindset?

Technology
Optimising for skills and
capabilities

Stop treating teams and
organisations as machines.

Start treating them as
complex (living) systems.

Jurgen Appelo

‘‘
’’

Designing teams - a complex problem

Project Dynamite: blowing up
team myths at REA

• There is a canonical REA team profile (myth?)

• We have a standard model for designing new teams
(myth?)

• All teams have 12 people (myth?)

Product delivery team roles

Product Manager Developer

QA

Systems Engineer
BA

Designer

Delivery Lead

Product delivery tribe roles

Tech Lead

Engineering Manager

Scientific research

The typical REA team?

There isn’t one

5
Teams matching the most common
profile: Delivery Lead - Designer -
Developer - Product Manager

6.6 Average number of
developers per teams

44 Teams in REA Australia
across 7 LoBs and 15 tribes 10.3 Average size of a

product delivery teams

11.9 Average size of a Xi’an
teams

13 Teams distributed with
Xi’an

35% Teams with a QA

7.6 Average number of
developers in Xi’an teams 7:1 Average Developer to

QA ratio

15% People in “tribe roles”

The data

45% Teams with a BA

5
Most common tribe roles:
Systems Engineer
Designer
Technical Lead
Engineer Manager
Product Manager

25% Teams with a Systems
Engineer

Greenfields

Legacy

Leaf Core

The context for teams

Complexity
Cost

Communica`on overhead
Impact of mistakes

Design teams based on your context

• Teams are complex

• There are many variables

• Determine what are you
trying to optimise for

• We refactor code design

• We refactor system design

• We should refactor team design

Evolutionary teams

Refactoring our
mobile teams

2010

2011

First REA iOS app

First Android app

Mobile development @ REA

2012

Commercial iOS app

2014

Android team formed

2016

2017

Modern mobile architecture

2018

Federated delivery
New apps launched

Organiza`ons which design
systems ... are constrained
to produce designs which
are copies of the
communica`on structures
of these organiza`ons

Melvin Conway

‘‘
’’

Conway’s Law

The unintended side effects
of Conway’s Law

• Our iOS and Android teams built iOS
and Android apps that lead the
market

• and had different features

• and looked different

• and shared lihle

• We built two new monoliths

Co-ordinating a feature across platforms/teams

Optimisation problems

No back end development skills: dependencies

Designers: platform-focused or experience-focused?

Experiments in refactoring
team design

• Plajorm teams

• Feature teams

• Virtual teams

Clear purpose

Team design principles

Minimise dependencies

Maximise autonomy

Reduce communication overhead

Remove technology silos

Objective-driven teams

• Kaizen

• Mobile architecture

Companion API

Listings Services

Results Details

Results Details

Listing data

View models

Inverse Conway Manoeuvre

What has architecture got to do with team design?

A few months ago I called
myself an iOS developer. Now I
call myself a full stack mobile
dev.

Yanzi Li

‘‘
’’

Teams are evolutionary

• Refactor them to avoid entropy

• Understand how your context is
changing

REA’s next team horizon

• Collabora`on at scale

• Evolu`on to plajorm teams

But we said teams should be
autonomous. Why do we need a
model for collaboration?

Collaboration

A consumer platform for multiple products

Collaboration model to scale development across REA

Enabled by federated delivery

Evolving to platform teams and product teams

How will these shape our team designs?

Key tips

• Teams are complex systems

• Teams are evolu`onary. Refactor
them

• Think carefully before designing
teams by imita`on

Thank you

Peter Moran
Engineering Manager, REA

