
Strangle The Monolith
A Data Driven Approach

Amjad Sidqi, Associate Director | Pivotal Labs

David Julia, Director | Pivotal Labs

HARD TO
CHANGE

The Situation

The Data Driven Strangler

How to Get Started

The Situation

The Data Driven Strangler

How to Get Started

The Scenario

Additional business features

Cost Estimator for medical procedures

Financial Penalties for inaccurate estimations

Existing
Architecture

3rd Party Web UI

Monolith

Source
System 1

Source
System 2

Source
System 3

… Source
System N

Peeking Inside
the Monolith

Main Member-Facing
Web UI

Account
Customization

Member Store

Secure Messages

...etc.
Member Liability
Estimator SOAP

Service Component

Source System
1

Source System
2

Source System
3

… Source
System N

Peeking Inside
the Monolith

Main Member-Facing
Web UI

Account
Customization

Member Store

Secure Messages

...etc.
Member Liability
Estimator SOAP

Service Component

Source System
1

Source System
2

Source System
3

… Source
System N

Commit to the rewrite:

A new API that returns the same

results & supports “tiered”

networks

Initial approach
The expert leads the way

The Strangler
Pattern: An
Iterative Rewrite

Benefits of a rewrite with
reduced risk, faster time to
value

Does require investment in the
approach.

Strangler Fig Hollow Inside of Strangler Fig

Uncertainty
Complex flows create anxiety

Fundamental assumptions were wrong

Pssst… This isn’t working

Strangler is great for

decomposition.

BUT

We couldn’t know what logic to

build in our new services.

The Data Driven Strangler

The Situation

How to Get Started

Enter The Data
Driven Strangler

+

= ☺

Pass-through &
Log (in prod)

3rd Party Web UI

Monolith

Source
System 1

Source
System 2

Source
System 3

Project X

Collect Request/Response Data

3rd Party Web UI

1 week

It was like turning on the lights

Log Both Results
& Default

3rd Party Web UI

Monolith

Source
System 1

Source
System 2

Source
System 3

Project X

Collect Request/Response Data
for Both

Defaulting → No Risk of Bad Result

3rd Party Web UI

Monolith

Source System
1

Source System
2

Source System
3

Project X

Calculation Module

2 weeks

Log The Deltas!

Automate
Analysis

Web App UI

Monolith

Source System
1

Source System
2

Source System
3

Project X

Calculation Module

3 weeks

We optimized for near real time

feedback loops

Let’s focus on
what matters ...

 % Error Cases ✖ Avg. $ Diff ✖ Avg.

Requests/Day

=

Possible Financial Impact/Day

Starting to strangle stable cases

Started to turn off
path to old
system for some
cases

Web App UI

Monolith

Project X

Calculation Module

Source System
1

Source System
2

Source System
3

5 weeks

Possible Financial Impact/Day

<

Cost to Maintain Legacy

When

 Then...

Shut down the
Legacy
Calculation Path

Project X

Only call into our new calculation
module

We’ve now strangled a large part of
the monolith!

3rd Party Web UI

Source System
1

Source System
2

Source System
3

Project X

Calculation Module

13 weeks

This made us feel
great!

The Data Driven Strangler

The Situation

How to Get Started

Did any of that sound familiar?

Are you thinking of a rewrite?

Is legacy technology holding you

back?

Data-Driven Strangler is Not a

Silver Bullet

Options

1. Rewrite from scratch

2. Buy off the shelf

3. Do nothing

4. Containerize

5. Strangler Pattern

Build vs Buy →
Build & Buy

Is it core to your business?

Somewhere you want to differentiate?

Will the buy option require a lot of customization--
building logic into the system?

Often, the best option is both: Build the differentiating
parts, “buy” commodity components (eg don’t build
your own SendGrid, don’t build Stripe, don’t build your
own cloud platform).

When to ‘Do
nothing’?

● No delivery pressures

● Low strategic importance

● Stable enough if not touched

● Opex costs under control

What about
Containerizing?

Doesn’t actually solve your
problem

Fragmented
business rules

Painful deployment
processSlow to augment

Technical Debt

Hard to test

When should you rewrite?

Maturity/Traction of product

● Original product was way off the mark, didn’t
achieve goals (eg no user adoption).

When should you rewrite?

Maturity/Traction of product

● Original product was way off the mark, didn’t

achieve goals (eg no user adoption).

● Original product does not have traction

When should you rewrite?

Maturity/Traction of product

● Original product was way off the mark, didn’t

achieve goals (eg no user adoption).

● Original product does not have traction

● Significant deviation from original intent of product,

going after a new market

When should you rewrite?

Maturity/Traction of product

● Original product was way off the mark, didn’t

achieve goals (eg no user adoption).

● Original product does not have traction

● Significant deviation from original intent of product,

going after a new market

● Technology holding you back (Mainframe, Visual

Basic overly-customized SFDC or AEM)

When should you rewrite?

Maturity/Traction of product

● Original product was way off the mark, didn’t

achieve goals (eg no user adoption).

● Original product does not have traction

● Significant deviation from original intent of product,

going after a new market

● Technology holding you back (Mainframe, Visual

Basic overly-customized SFDC or AEM)

● You can redefine the business process around the

new system.

When to use the
Strangler Pattern

● Well established product with significant user

base

● A significant risk to revenue streams

● Lots of necessary complexity in your existing

product (eg complex regulatory compliance rules)

● You don’t know the business rules in the existing

system

Learnings/Takeaways

● This sounds technical but don’t compromise User Centred Design

● An opportunity to remove complexity

● Get laser focused on what really matters 80:20

● Don’t rebuild like for like

● When rewriting take an iterative approach

How do you do this in your organization?

Start Small

Put together a business case around a subset of the capabilities that will deliver value over
a matter of months, not years. Frame it as a “no regrets” move with near term benefits.

Quantify Outcomes

Establish a baseline and measure against it (dev cycle time is good, but
cost/revenue/acquisition metrics are even better)

Use one win to build momentum for the next

By starting small, you can prove out the process and build support to keep going. Once you
have a first win, a technical foundation, and understanding of the system, you can “double
down” and scale the effort.

With the support of Pivotal!

email: djulia@pivotal.io
Twitter: @DavidJulia

email: asidqi@pivotal.io

We Love Feedback
What would you like to
hear more about?

What questions do you still
have?

And…
We are hiring

Get in Touch!

mailto:djulia@pivotal.io
mailto:asidqi@pivotal.io

